
DESIGNING WITH ADA* FOR SATELLITE SIMULATION: A CASE STUDY

W. W. Agresti, V. E. Church, D. N. Card, P. L. Lo
Computer Sciences Corporation**

ABSTRACT

A FORTRAN-oriented and an Ada-oriented design for the same SyS-
tem are compared to learn whether an essentially different de-
sign was produced using Ada. The designs were produced by an
experiment that involves the parallel development of software
for a spacecraft dynamics simulator. Design differences are
identifieu in the use of abstractions, system structure, and
simulator operations. Although the designs were significantly
different, this result may be influenced by some special charac-
teristics discussed in the paper.

INTRODUCTION

Some early experiences using Ada for scientific applications
(e.g., [l]) showed that the design of the Ada system "looked
like a FORTRAN design." As part of an experiment on the effec-
tiveness of Ada, the experiment planners identified the follow-
ing factors that were believed to be prerequisites for obtaining
a new design, one that would take full advantage of Ada features:

0 The opportunity to set aside previous designs for the
system and work directly from system requirements

0 Training in design methods that exploit Ada's capabili-
ties

0 The encouragement to explore these new design methods

The purpose of this paper is to address the following question:

When these prerequisites were satisfied, was a different
design produced?

The experiment in progress is being conducted by the Software
Engineering Laboratory (SEL) [2] of the National Aeronautics and
Space Administration's Goddard Space Flight Center (NASA/GSFC).
NASA/GSFC and Computer Sciences Corporation (CSC) are cosponsors
of the experiment, which is supported by,personnel from all

*Ada is a registered trademark of the U.S. Government (Ada Joint
Program Office).

**Authors' Address: Computer Sciences Corporation, System
Sciences Division, 8728 Colesville Road, Silver Spring,
Maryland 20910

0217 F.1.3.1

three SEL participating organizations (NASA/GSFC, CSC, and the
University of Maryland).

The objective of the overall experiment is to determine the
effectiveness of Ada for flight dynamics software development at
NASA/GSFC. ((2 1 describes the characteristics of this environ-
ment.) The experiment, begun in January 1985, consists of the
parallel development, in FORTRAN and Ada, of the attitude dy-
namics simulator for the Gamma Ray Observatory (GRO) spacecraft.
When completed, the system is expected to comprise approximately
40,000 source lines of code to execute on a DEC VAX-l1/780 com-
puter. Additional information about the experiment is presented
in [3] .

Although the FORTRAN and Ada development teams are proceeding in
parallel, the FORTRAN team is further along, due, in part, to
the time necessary to train the Ada team in the Ada language and
design methods. Both teams have completed the critical design
review. This paper reports on a preliminary review of the de-
sign processes and products of both teams in order to address
the question of interest. The design problem is discussed, an
overview of the designs is presented, design processes and prod-
ucts are compared, and the results and their implication for
answering the question are summarized.

THE DESIGN PROBLEM

The purpose of the GRO dynamics simulator is to test and eval-
uate GRO flight software under conditions that simulate the ex-
pected in-flight environment as closely as possible [4] . The
simulator is represented as a control problem in Figure 1. The
right side of the figure models the onboard computer (OBC) flight
software. The OBC Model uses sensor data provided by the Truth
Model to determine the estimated attitude. Comparing the esti-
mated attitude to the desired spacecraft attitude, the OBC
determines the attitude error. Control laws are modeled within
the OBC to generate attitude actuator commands that will reduce
the attitude error.

The Truth Model, the left side of Figure 1, simulates the re-
sponse of the attitude hardware. The Truth Model updates and
interpolates the spacecraft ephemeris and environmental torques,
integrates the spacecraft equations of motion, and generates the
true attitude of GRO. The Truth Model produces sensor data cor-
responding to the attitude, for use by the OBC Model.

Both teams have the task of designing and developing software to
simulate the attitude dynamics and control shown in Figure 1.
An additional requirement on the FORTRAN team is to extract its
Truth Model and integrate it with the Goddard GRO Simulator
(GGS), a real-time simulator of the GRO OBC flight software.

0217 F.1.3.2

ORIGINAL PAGE IS
OF POOR QUALITY

F i g u r e 1. GRO Dynamics S i m u l a t o r a s a C o n t r o l Problem

OVERVIEW OF THE DESIGNS

I n t h i s h i g h - l e v e l look a t each d e s i g n , t h e o v e r a l l sys t em
s t r u c t u r e and t h e e x t e r n a l and i n t e r n a l data f l o w s a re d i s -
cussed. , Some simple q u a n t i t a t i v e measures are e x t r a c t e d from
e a c h d e s i g n .

System S t r u c t u r e

k t o p - l e v e l sys t em diagram f o r each d e s i g n i s shown i n F i g u r e s 2
and 3. To f a c i l i t a t e comparison, t h e i d e n t i c a l s y s t e m i n p u t and
o u t p u t o b j e c t s are p l a c e d a t t h e t o p and bot tom, r e s p e c t i v e l y ,
of each f i g u r e . The FORTRAN sys t em c o n s i s t s of t h e f i v e subsys -
t e m s i n t h e middle of F i g u r e 2. The A d a sys t em is t h e p r o d u c t

FORTRAN team method. So, a l t h o u g h "subsystem" w i l l be used t o
refer t o t h e major Ada u n i t s , t h e y a re , i n f a c t , A d a packages.
Fu r the rmore , t h e s i m u l a t i o n s u p p o r t subsys tem i n F i g u r e 3 is
r e a l l y a c o l l e c t i o n o f three Ada packages f o r t h e s i m u l a t i o n
timer, parameters, and ground commands. The Ada sys t em a p p e a r s
i n F i g u r e 3 as f i v e subsys tems o n l y t o i n v i t e compar ison w i t h
FORTRAN r e g a r d i n g t h e h i g h - l e v e l da ta f low.

* of a d e s i g n method (discussed below) t h a t d i f f e r s from t h e

The FORTRAN sys t em is composed of three d i s t i n c t programs: Pro-
f i l e , P o s t p r o c e s s o r , and S i m u l a t o r (T r u t h Model, OBC Model, and
S i m u l a t i o n Con t ro l - I /O) . A s separate programs, e a c h i n t e r a c t s
w i t h t h e user, a s shown by t h e e x t e r n a l da ta f l o w s i n F i g u r e 2.
The a s s ignmen t of p r o c e s s i n g f u n c t i o n s t o e a c h subsys tem is
shown i n F i g u r e 4 f o r b o t h t h e FORTRAN and A d a sys tems.

0217 F . 1 . 3 . 3

0RIG:FJAL FAGE IS
OF POOR QUALITY

0217

Figure 2. FORTRAN System Diagram

Figure 3. Ada System Diagram

F . 1 . 3 . 4

ORIGSNAL PAGE IS
OF POOR QUALITY

NUMBER
OF

W B R o U n l y u

U

a

W

TOTAL
W B R ~ E S

tm

87

az
TOTAL

WBMOQRAmS

Figure 4 . Allocation of Functions Among Subsystems

The Ada system is designed as a single program, with each sub-
system performing the functions listed in Figure 4 . The OBC
Model is functionally similar to its FORTRAN counterpart. The
Ada Truth Model incorporates the processing performed in the
FORTRAN Profile in addition to the FORTRAN Truth Model. (The
FORTRAN user has the option of choosing not to use Profile and
having those calculations performed in the Truth Model, thereby
mirroring the Ada design.) The Ada design pulls apart the simu-
lation control functions from the User Interface; these process-
ing elements are combined in the FORTRAN design. However, the
User Interface in Ada includes the results processing that, in
FORTRAN, is delegated to a separate program, the Postprocessor.
Both designs have major units named Truth Model and OBC Model to
reflect the underlying control problem illustrated in Figure 1.

External Data Flow

B o t h designs in Figures 2 and 3 show communication with nine
external objects (files or devices). Eight of the nine are
identical, the difference being the profile data file in FORTRAN
and the display format file in Ada. The FORTRAN design requires
the profile data file to decouple the Profile and Truth Model
processing. The use of a display format file in the Ada design
is motivated by reusability considerations. By keeping the de-
tailed formats of menus and displays on an external file, the
user interface is easier to reuse on a future simulator.

0217 F.1.3.5

The number of external data flows is greater in the FORTRAN de-
sign, as shown in Table l. Most of the additional data flows
arise from the separation of the FORTRAN design into three pro-
grams, requiring more data flows to and from the user and dis-
tinct data flows to the profile data and results output files
that decouple the programs. Also, as shown in Figure 2, the
star catalog external file is required in both Profile and the
Truth Model.

SEPARATE PROGRAMS

TASKS

' EXTERNALENTITIES

EXTERNAL DATA FLOWS

INTERNAL DATA ROWS

SUBROUnNEWSUBPROGRAMS

PACKAGES

Table 1. Simple Quantitative Design Characteristics

I CHARACTERISTIC FORTRANDESIGN I ADADESIGN I
3

5 (IN SIMULATOR
PROGRAM)

8

18

3

282

1

5

8

10

8

262

101

The Ada design (Figure 3) involves the minimum number of exter-
nal data flows. The details of accessing each file are confined
to a single subsystem.

Internal Data Flow

Table 1 shows that the Ada design has nine internal data flows,
versus three for the FORTRAN design. Of course, no more inter-
nal data flows are possible in the FORTRAN case because Profile
and the Postprocessor are separate programs. The three remain-
ing subsystems in the FORTRAN design exchange data with one
another via COMMON blocks. (Although the use of COMMON has been
criticized, empirical results from the flight dynamics environ-
ment has shown it to be effective [SI.)

Although the number of distinct data flows (connections) between
subsystems is greater in Ada, fewer data items pass over these
connections than in FORTRAN.. An example will show how various
Ada language features help to reduce the proliferation of data
item names.

Both designs provide for the recording of simulation analysis
results. In FORTRAN (Figure 2), these results pass from the

0217 F.1.3.6

?

Truth Model and OBC Model via COMMON to the Simulation Control-
1/0 Subsystem, which writes them to the external results output
file. In Ada (Figure 3) , the internal data flows from the Truth
Model, OBC Model, and Simulation Control carry results data to
the User Interface, which writes them to the results output file.

In the FORTRAN design, the results data record comprises 4 3 dis-
tinct variable names. In Ada, the results are passed under a
single identifier, Results Data, when a procedure, Put Results-
Data, in the User Interface is called by the Truth Model, OBC
Model, or Simulation Control. This reduction in the number of
iaentifiers is possible because of the use of Ada's variant rec-
ord feature. In the example, Results-Data can be either an
executed ground commana, parameter upoate, error message, or
analysis result. In Ada, the user can declare Results Data as
type RESULT, defined as a record type with a variant part as
follows :

type RESULT - KIND is (Error Msg, Log - Command, Results,
Parameters) ;

type RESULT (Kind: RESULT KIND:=Results) is -
record
case Kind is
when Error Msg I Log Command =>

Result-Line:
when Results 1 Parameters = >

Result-Rec: PARAM RESULT;

STRING (1. . 80) ;
-

end case;
end record:

Because of such features, the count of data items is consistently
lower over the Ada data flows than over the FORTRAN data flows.

COMPARING DESIGN PROCESSES

Differences in the design processes help to explain the differ-
ences in the delivered design products of the FORTRAN and Ada
teams. Two aspects of the design process--critical design
"drivers" and the use of design abstractions--will be examined.

Design Drivers

The design drivers--critical characteristics that strongly in-
fluence design decisions--are different for the two teams. The
FORTRAN team was influenced by its real-time processing require-
ment, previous designs, and schedule concerns. The Ada team was
influenced by its training in alternative design methods and the
opportunity to apply those methods.

Although the basic requirements for each team are identical, the
FORTRAN team has a real-time requirement, noted earlier, to in-
tegrate its Truth Model Subsystem with the Goddard GRO Simula-
tor. To help ensure that the Truth Model will complete its

0 217 F.1.3.7

processing in time to meet this requirement, the FORTRAN design
removes those computations that are not strongly attitude de-
pendent from the Truth Model to a separate Profile Program.
Then, instead of performing these calculations (such as environ-
mental torque and magnetic field) each iteration, the Truth
Model can simply read the necessary values from the Profile data
set (as shown in Figure 2) . This separation of the Profile cal-
culations from the Truth Model is further encouraged by the pre-
vious designs of dynamics simulators in FORTRAN, which also had
separate Profile Programs. The FORTRAN design also provides the
option, for qreater accuracy, of performing the Profile calcula-
tions within the Truth Model.

The Ada design, not required to meet the real-time constraint in
this experiment, includes in its Truth Model the calculations
performed in the FORTRAN Profile Program and FORTRAN Truth Model.
It will be of interest later to test whether the real-time re-
quirement can be met by the Ada design and by the FORTRAN design
under the option of performing Profile calculations inside its
Truth Model.

A strong driver of the FORTRAN design is the presence of a pre-
vious design, used successfully on past simulators. The parti-
tioning into subsystems in Figure 2 is identical to that of
previous simulators. With this legacy, the interfaces between
subsystems--a frequent problem area with original designs--are
clarified early in the project. With the interfaces relatively
clear, the subsystems can be assigned to individuals or small
subgroups for detailed design and implementation with the "de-
sign envelope" fairly well established.

The Ada design was intended to be an independent one, free of
the influence of past simulator designs. The subsystems that
evolved were the product of lengthy design discussions. The
similarity of the Ada subsystems to those in FORTRAN owes more
to both designs reflecting the underlying control problem of
Figure 1, rather than the Ada design copying the FORTRAN design.

The schedule constraints on the teams were different. To help
explain this difference, consider that the dynamics simulator is
a routine element of the set of ground support software for a
satellite mission. The entire complement of software has rigid
schedule constraints derived from launch dates. FORTRAN has
been used in the past and is being used now for the GRO attitude
ground support software. In such an environment, it is natural
that the FORTRAN team was perceived as building the real, opera-
tional software, even though the Ada product is also expected to
pass acceptance testing and to perform in an operational envi-
ronment.

The FORTRAN team generally had more schedule pressure than did
the Ada team, and this difference affected the design products
and methods. Both teams were charged with developing operational
software, but the Ada team was also encouraged to try Ada-related

0217 F. 1.3.8

design methods as a way of understanding their usefulness in the
flight dynamics environment. The FORTRAN team had more exclu-
sively practical concerns of meeting the development schedule.

Desiqn Abstractions

The use of abstraction was also different for each team. The
FORTRAN design products provide evidence of the procedural ab-
straction carried forward from earlier designs. An individual
subroutine may be thought of as a black box that will, for spec-
ified values of its input variables, produce the same specific
output values every time it is invoked. The input and output
quantities are transmitted via argument lists or COMMON. This
procedural abstraction can also be used at higher levels in the
system. For example, the Truth Model is a procedural abstrac-
tion possessing an identifiable function (computing the current
attitude state of the spacecraft), specific input quantities
(primarily parameter values and actuator commands), and specific
output quantities (primarily sensor data reflecting the time
attitude state) .
The FORTRAN design also has elements of being object oriented.
Functional processing at the lower levels is organized around
objects in the problem domain such as specific sensors and ac-
tuators. For example, the Truth Model contains a sensor model-
ing component that calls seven routines: one for each sensor
type, Anyone making a code modification due to a requirement
change relating to the fine Sun sensor will find a subroutine,
FSSMOD, described as modeling the fine Sun sensor. The use of
COMMON also reflects an orientation to objects. For example,
one COMMON block holds gyro parameters; another has FSS param-
eters; and so on.

Concurrent processes are used in the FORTRAN design to model the
concurrency that exists in the operational use of the simulator.
For example, an analyst may interrupt the processing to change
the value of a parameter. System services of the DEC V A X - 1 1 / 7 8 0
VMS operating system are used to implement the concurrent proc-
esses. Both the object-oriented features and the use of con-
currency are characteristics of past FORTRAN simulators,
demonstrating that reuse of design is the operative high-level
approach in the FORTRAN design,

1

The Ada design process was significantly different from that of
the FORTRAN team.
the design phase of the project.

The differences begin to emerge even before
*

The functional specifications and requirements document [4 1 for
the GRO dynamics simulator is influenced by the design legacy of
dynamics simulators developed within the organization. For ex-
ample, the document is organized by major subsystem because that
particular partitioning into subsystems (Figure 2) has persisted
through several simulator project teams. In effect, the highest
level design is completed during the requirements analysis phase.

0217 F.1.3.9

This encroachment of design on requirements actually provides a
welcome headstart to a team who will be following that design
and taking maximum advantage of the existing code based on that
design. While such a document fit in well with the projected
work of the FORTRAN team, it was not as helpful to the Ada team,
who wanted to produce an independent design, uninfluenced by
previous simulator designs.

A way out of this dilemma--the influence of the previous design
present in the requirements--was to recast the requirements in a
different form. The Ada team developed a specification for the
dynamics simulator using the Composite Specification Model (CSM)
161, which represents a system from the functional, dynamic, and
contextual views. Recasting the system requirements using CSM
served other purposes as well: It provided a testbed for the
CSM as a specification tool, and it allowed the Ada team, who
was relatively inexperienced in the application area, to analyze
the system requirements in a systematic manner. The result of
this exercise was a specification document [7] and a better
understanding of the needs of the system. For example, included
in [7] are PDL-like process specifications describing the re-
quired functional processing. The specification succeeded in
removing the inherited design from the system requirements and
served as a starting point for the Ada design.

The Ada language itself influenced the design team because the
team members knew that useful design abstractions could be rep-
resented in Ada. The team had been exposed to object-oriented
design, tne process abstraction methodology, and other approaches
during their training program, which included the development in
Ada of a 5700-line training exercise [3] . The principal design
abstractions used by the team were the state machine abstraction
and the representation of the system according to the orthogonal
views of a seniority hierarchy and a parent-child hierarchy [8].
The state machines are conveniently implemented as Ada packages
consisting of internal state data and a group of related proce-
dures that operate on that state data. The Ada design product
reflects this approach; the design includes 104 packages and
69 sets of state variables.

An instance of the seniority hierarchy is shown in Figure 5.
The team's design approach is to build the system as layers of
virtual machines 191. For example, Figure 5 shows that the OBC
package is senior to the Truth Model package. The arc between
the two pac-shows that OBC uses operations (subprograms) of
the Truth Model. Arcs do not go from a package to one that is
above it. In this way, each diagram expresses the relative
seniority of the packages [lo]. The orthogonal parent-child (or
inclusion) hierarchy provides for a package (like one of those
in Figure 5) to be represented on a separate diagram in terms of
its constituent elements; for example, subprograms, other pack-
ages, and state data.

0217 F.1.3.10

ORIGINAL PAGE IS
OF POOR QUALITY

Figure 5. Ada Design: Seniority Hierarchy of Packages

In summary, the Ada team was able to use effective design ab-
stractions because they were confident that these abstractions
could be preserved in an Ada implementation.

COMPARING DESIGN PRODUCTS

The design documents were examined to determine any significant
differences. Some differences were noted earlier: the FORTRAN
design involving three programs; the different assignment of
functional processing to subsystems; and the data flow. Review
of the design documents revealed two more fundamental differ-
ences in the basic operation of each simulator, as specified by
the designs. These key differences can be shown by tracing the
operation of each simulator.

Figure 6 shows the logical relationships among the five tasks
that constitute the FORTRAN simulator program (i.e., excluding
Profile and the Postprocessor). The task called GROSS in Fig-
ure 6 is the main process started by the user via a RUN command.
GROSS remains an active process throughout the simulation run,
displaying a menu of user options at the user's terminal and
remaining ready to respond to a user request.

The SIMCON process, created by GROSS, controls the simulation.
AS suggested by the control loop in Figure 1, the simulation
involves iterating over the Truth Model and the OBC Model.
SIMCON directs this iteration. SIMCON wakes up the Truth Model
(TM) process, which computes the attitude state and deposits the
corresponding sensor data into a global COMMON section. When TM
is finished, it goes into hibernation, setting an event flag
that signals SIMCON to wake up the OBC process. OBC obtains the

0 217 F. 1.3.11

ORlGlfJAL PAGE IS
OF POOR QUALITY

onon
I
I
I

c u r r e n t s e n s o r da t a l e f t by TM, models t h e c o n t r o l laws, and
g e n e r a t e s a c t u a t o r commands t h a t a re placed i n a g l o b a l COMMON
s e c t i o n f o r access by TM on t h e n e x t i t e r a t i o n . Its work f i n -
i s h e d , OBC h i b e r n a t e s , s i g n a l i n g SIMCON t o w a k e u p SIMOUT t o
wri te an a n a l y s i s r e c o r d t o c a p t u r e t h e r e s u l t s o f t h i s i t e r a -
t i o n . When SIMOUT h i b e r n a t e s , SIMCON w a k e s u p TM t o b e g i n t h e
n e x t i t e r a t i o n .

I
I

, I

I
I r w a v r I
I
I

F i g u r e 6, FORTRAN Design: H i e r a r c h y o f Execu t ion T a s k s

I

I
. I

The FORTRAN user c a n s e t t h e c y c l e t i m e , which is t h e amount of
t i m e t h a t t h e s i m u l a t i o n clock is incremented . The c y c l e t i m e
d e t e r m i n e s when e v e n t s o c c u r i n t h e s i m u l a t i o n , f o r example,
when t h r u s t e r s f i r e , when new s e n s o r d a t a are g e n e r a t e d , and
when t h e s p a c e c r a f t a t t i t u d e s t a t e is updated. The FORTRAN de-
s i g n t h u s i n v o l v e s i t e r a t i n g o v e r t h e three processes (TM, OBC,
and SIMOUT) , w i t h t h e user-settable c y c l e t i m e d e t e r m i n i n g when
e v e n t s occur .

I
I I

F i g u r e 5 shows a n e x c e r p t from t h e Ada d e s i g n c o r r e s p o n d i n g t o
t h e s i m u l a t o r o p e r a t i o n , The n o t a t i o n i n t h e f i g u r e needs some

d e n o t e off-page c o n n e c t o r s , w i t h t h e l abe ls El, E2, etc., re-
f e r r i n g t o e x t e r n a l f i l e s and t h e l a b e l 1 d e n o t i n g package num-
ber 1 from a d i f f e r e n t diagram. A r c s show t h e d i r e c t i o n o f a
subprogram c a l l from a subprogram i n t h e c a l l i n g package t o a
subprogram i n t h e called package. More d e t a i l on t h e d e s i g n
n o t a t i o n is p r e s e n t e d i n [lo].

The p lacement of packages on d e s i g n d i ag rams such as F i g u r e 5
shows t h e s e n i o r i t y h i e r a r c h y described ear l ie r . Thus, i n Fig-
u r e 5, t h e S i m u l a t i o n C o n t r o l package is s e n i o r t o o t h e r pack-
a g e s on t h e d iagram; t h a t is, it u s e s services p rov ided by t h e s e
o t h e r packages and t h e y do n o t u s e i t s s e r v i c e s . The three

I e x p l a n a t i o n , The rounded r e c t a n g l e s are A d a packages. Circles

0217 F. 1.3.12

I
8

I
lm

1

OK
I
I I -

packages at the lowest level (which together constitute the sim-
ulation support subsystem of Figure 3) are junior to the pack-
ages higher in the diagram and as such are not the origin for
any arcs that terminate at higher level packages.

This more detailed examination of the operation of each simula-
tor revealed two clear differences in the Ada design: the pas-
sive role of the Truth Model and the separate timing of the OBC
and the Truth Model.

The Ada design represented by Figure 5 shows that, unlike the
FORTRAN design, the OBC and the Truth Model are - not at the same
level. The OBC calls the Truth Model to obtain sensor data when
the data are needed. The Truth Model is passive; it performs
processing and generates sensor data only when directed to do S O .

Both the OBC and the Truth Model are junior to Simulation Con-
trol in Figure 5, an arrangement that appears to mimic the
FORTRAN design. However, the Ada design notebook [ll], which
provides details of the actual calls made by Simulation Control,
shows the Ada design to be quite different. Recall that the
cycle time in FORTRAN affected both the OBC and the Truth Model.
In the Ada design, the timing of the OBC and the Truth Model is
separate: the Truth Model cycle time is under user control; OBC
timing is not. The Ada team chose to model faithfully the
spacecraft OBC flight software, whose timing is not under user
control. Because timing and event scheduling are central ele-
ments in any simulation, this difference is of a fundamental
nature and demonstrates that the Ada team was able to go back to
basic system requirements for their analysis.

CONCLUSIONS

The comparison of FORTRAN and Ada designs has revealed signifi-
cant differences in both the design processes and products. In
this experiment, the Ada design has been shown to be different
to a significant degree from the FORTRAN design. This result
differs from that reported in [l] for another monitored Ada de-
velopment project in a different environment.

The results have implications for other organizations contem-
plating the use of Ada. This experiment led to a design that
exploits Ada's features for expressing design abstractions.
However, this result was supported by (1) the use of a specifi-
cation method, CSM, to counteract the influence of design-laden
requirements; (2) the explicit allowance for the Ada team to
pursue new design methods, not requiring the team to take the
less costly route of reusing the existing design; and (3) train-
ing in alternative design methods.

ACKNOWLEDGMENTS

The Ada experiment is managed by F. McGarry and R. Nelson of
NASA/GSFC and actively supported by representatives from all SEL

0217 F. 1.3.13

participating organizations (NASA/GSFC, CSC, and the University
of Maryland), especially V. Rasili, G. Page, E. Katz, and
C. Brophy. The authors thank J. Garrick, S. DeLong, G. Coon,
D. Shank, and E. Seidewitz for their assistance.

REFERENCES

1.

2.

3.

4.

I

5.

6.

7.

8.

9.

10.

I 11.

V. R. Basili et al., "Characterization of an Ada Software
Development," Computer, September 1985, vol. 18, no. 9,
pp. 53-65

Software Engineering Laboratory, SEL-81-104, The Software
Engineering Laboratory, D. N. Card, F. E. McGarry, G. Page,
et al., February 1982

W. W. Agresti, "Measuring Ada as a Software Development
Technoloqy in the Software Engineering Laboratory (SEL) ,"

Tenth Annual Software Engineering Workshop, Proceedings,
NASA/GSFC, December 1985

Computer Sciences Corporation, CSC/SD-85/6106, Gamma Ray
Observatorv (GRO) Dynamics Simulator Requirements and Math-
ematical Specifications, G. Coon, April 1985

D. N. Card, V. E. Church, and W. W. Agresti, "An Empirical
Study of Software Design Practices," IEEE Transactions on
Software Engineerinq, February 1986, vol. SE-12, no. 2,
pp. 264-271

W. W. Agresti, "An Approach for Developing Specification
Measures," Proceedinqs, Ninth Annual Software Engineering
Workshop, NASA/GSFC, November 1984

Computer Sciences Corporation, CSC/TM-85/6108, Specification
of the Gamma Ray Observatory (GRO) Dynamics Simulator in Ada
(GRODY), W. W. Agresti, E. Brinker, P. Lo, et al., November
1985

V. Rajlich, "Paradigms for Design and Implementation in
Ada," Communications of the ACM, July 1985, vol. 28, no. 7,
pp. 718-727

E. W. Dijkstra, "The Structure of 'THE'-Multiprogramming
System," Communications of the ACM, May 1968, vo l . ll,,
no. 5, pp. 341-346

E. Seidewitz and M. Stark, "Toward a General Object-Oriented
Software Development Method," Proceedings, First Interna-
tional Symposium on Ada for the NASA Space Station, Houston,
Texas, June 1986

Computer Sciences Corporation, CSC/SD-86/6013, GRO Dynamics
Simulator in Ada (GRODY) Detailed Design Notebook,
W. Agresti, E. Brinker, P. Lo, et al., March 1986

, 0217 F. 1.3 . 14

